(T-954)

Roll No.

ID-201-CU-305612

M. Sc. EXAMINATION, 2023

(Third Semester)

(w.e.f 2020 UTD's)

MATHEMATICS

Code: MATH-231

Analytical Number Theory

Time: 3 Hours

Maximum Marks: 80

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: This question paper consists of five Sections.

Question No. 1 in Section I is compulsory,
consisting of eight short answer type

சப்பையர் **T-201-CU-305**612(T-954)

P.T.O.

questions each carrying 2 marks. Each of the last four Sections (II-V) contains two questions each carrying 16 marks. Attempt one question from each Section.

Section I

- 1. (a) What does Euclid's Theorem tell us about prime numbers?
 - (b) What are Fermat Numbers? Give an example.
 - (c) Find the units in \mathbb{Z}_8 .
 - (d) Find the number of elements of order 4 in U₁₀.
 - (e) What is completely multiplicative function? Give an example.
 - (f) What is Diophantine equation?
 - (g) Find the value of $\phi(12)$.
 - (h) Find the value of $\tau(21)$. $8\times 2=16$

T-201-CU-305612(T-954) 2

Section II

- 2. (a) Let $a \ge 2$, $n \ge 2$ be natural numbers. If $a^n 1$ is a prime, then show that a = 2 and n = p for some prime number p. 8
 - (b) Show that F₅ is a composite number. 8
- 3. (a) Prove that π is irrational.
 - (b) Given any irrational number ξ , show that there exist infinitely many pairs (h, k) of integers such that $\left|\xi \frac{h}{k}\right| < \frac{1}{\sqrt{5}k^2}$. 8

Section III

- 4. (a) Solve the simultaneous congruences: $x \equiv 2 \mod(7), x \equiv 7 \mod(9),$ $x \equiv 3 \mod(4).$
 - (b) Find all the solutions of $x^2 + y^2 = z^2$, where 0 < z < 24.
- 5. (a) Prove that every natural number n can be written as a sum of four squares. 8

в-ш-ин T-201-CU-305612(T-954) 3

P.T.O.

(b) Let p be a prime such that p > 2 (that is, p is an odd prime), then show that $G[p^{\theta}(p-1)] \ge p^{\theta+1}$.

Section IV

- 6. (a) Let p be an odd prime. Then, the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$ has a solution if and only if $p \equiv 1 \pmod{4}$. https://www.haryanastudy.com8
 - (b) Prove that the Group U_2i is cyclic if and only if i=1 or i=2.
- 7. (a) Find the order of elements of U_{10} . 8
 - (b) Find primitive roots in U_n for n=28.

8

Section V

8. (a) Prove that the Mobius function $\mu(n)$ is a multiplicative function.

T-201-CU-305612(T-954)

(b) Show that:

$$\phi(n) = \sum_{\frac{d}{n}} \mu(d) \left(\frac{n}{d}\right) = -\sum_{\frac{d}{n}} d\mu \left(\frac{n}{d}\right).$$
 8

9. (a) Let n > 1 and $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, where p_1, p_2, \dots, p_k are distinct primes. Then prove that:

$$\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) ... \left(1 - \frac{1}{p_k}\right).$$
 8

(b) Prove that $\sigma(n)$ is odd $\Leftrightarrow n = m^2$ or $n = 2m^2$.

https://www.haryanastudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स क्षेजे और 10 रुपये पायें, Paytm or Google Pay से